If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-1300=0
a = 3; b = 5; c = -1300;
Δ = b2-4ac
Δ = 52-4·3·(-1300)
Δ = 15625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15625}=125$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-125}{2*3}=\frac{-130}{6} =-21+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+125}{2*3}=\frac{120}{6} =20 $
| 6x²+12x-18=0 | | (x−1)(x+6)=18 | | x=7,x^2-6x+4= | | 9=27^3x-5 | | 9=273^x-5 | | 42x-61=30x+23 | | 0.4y+1=1.6y-5 | | 0.4y+1=1.6y-23 | | t^2-24t+128=0 | | 6x-5=17x-5x | | x=-2/3,x=-5 | | n/(n+10.5438)=0.0314 | | 16^(2x+1)=28 | | l+120/l=23 | | l+(120/l)=23 | | 3x+12=4x-3+5 | | 22=-2*3x | | 22=2*3x | | 9d-3=5d+17 | | 5x-2=16-4x | | 4r-9=3r+5 | | 4(3k+5)=-16 | | 5(2^3x+4)=1/6^x | | 10=k*90 | | 3(2x+)=(x+1) | | x^2-46x+8400=0 | | 1x/3+9=-5 | | 3x2+4x-6=0. | | 3m-4=18 | | G(x)=-2x2+2 | | x+(x/2)=6000 | | 7x^2=-9x-3 |